1,373 research outputs found

    Static dielectric response and Born effective charge of BN nanotubes from {\it ab initio} finite electric field calculations

    Full text link
    {\it Ab initio} investigations of the full static dielectric response and Born effective charge of BN nanotubes (BN-NTs) have been performed for the first time using finite electric field method. It is found that the ionic contribution to the static dielectric response of BN-NTs is substantial and also that a pronounced chirality-dependent oscillation is superimposed on the otherwise linear relation between the longitudinal electric polarizability and the tube diameter (DD), as for a thin dielectric cylinderical shell. In contrast, the transverse dielectric response of the BN-NTs resemble the behavior of a thin (non-ideal) conducting cylindrical shell of a diameter of D+4D+4\AA , with a screening factor of 2 for the inner electric field. The medium principal component Zy∗Z_y^* of the Born effective charge corresponding to the transverse atomic displacement tangential to the BN-NT surface, has a pronounced DD-dependence (but independent of chirality), while the large longitudinal component Zz∗Z_z^* exhibits a clear chirality dependence (but nearly DD-independent), suggesting a powerful way to characterize the diameter and chirality of a BN-NT.Comment: submitted to PR

    Structural properties and quasiparticule energies of cubic SrO, MgO and SrTiO3

    Full text link
    The structural properties and the band structures of the charge-transfer insulating oxides SrO, MgO and SrTiO3 are computed both within density functional theory in the local density approximation (LDA) and in the Hedin's GW scheme for self-energy corrections, by using a model dielectric function, which approximately includes local field and dynamical effects. The deep valence states are shifted by the GW method to higher binding energies, in very good agreement with photoemission spectra. Since in all of these oxides the direct gaps at high-symmetry points of the Brillouin zone may be very sensitive to the actual value of the lattice parameter a, already at the LDA level, self-energy corrections are computed both at the theoretical and the experimental a. For MgO and SrO, the values of the transition energies between the valence and the conduction bands are improved by GW corrections, while for SrTiO3 they are overestimated. The results are discussed in relation to the importance of local field effects and to the nature of the electronic states in these insulating oxides.Comment: 3 figures, accepted in J. Phys.: Condens. Matte

    A strongly interacting gas of two-electron fermions at an orbital Feshbach resonance

    Get PDF
    We report on the experimental observation of a strongly interacting gas of ultracold two-electron fermions with orbital degree of freedom and magnetically tunable interactions. This realization has been enabled by the demonstration of a novel kind of Feshbach resonance occurring in the scattering of two 173Yb atoms in different nuclear and electronic states. The strongly interacting regime at resonance is evidenced by the observation of anisotropic hydrodynamic expansion of the two-orbital Fermi gas. These results pave the way towards the realization of new quantum states of matter with strongly correlated fermions with orbital degree of freedom.Comment: 5 pages, 4 figure

    Si-atoms substitutions effects on the electronic and optical properties of coronene and ovalene

    Get PDF
    We report a computational comparative study of the ground and excited states properties of graphene nanoribbons, analyzing the case of coronene (C24H12) and ovalene (C32H14) and their silicon-atoms substituted counterparts with single, double and triple atomic insertions. We used density functional theory (DFT) and time-dependent DFT to quantify the effects on the electronic and optical properties as a result of the chemical modifications. In particular, we compared ground-state total energies, electron affinities, ionization energies, fundamental gaps and optical absorption spectra, between the original systems and each substituted one. For both the molecules, we observed a general reduction of the fundamental gap after chemical modification. Concerning the optical properties, therefore, we observed a redshift of the optical onset in all the cases; in particular, we have found that, in one ovalene and coronene trimer-substituted configuration, the absorption edge takes place in the IR

    Coarsened Lattice Spatial Disorder in the Thermodynamic Limit

    Full text link
    In this Rapid Research Note the application of recently introduced [Physica A 277 (2000) 157] entropic measure S_Delta of spatial disorder for systems of finite-sized objects is presented. In the thermodynamic limit the critical behaviour of coarsened lattice model of random two-phase systems is illustrated for certain grain size distributions (GSDs) and chosen parameters. Also the changes of spatial disorder, quantified by S_Delta, between the limit GSDs clearly show that the topological equivalence of the two phases is broken.Comment: 3 pages, 1 figur

    Time-Dependent Density Functional Theory Investigation on the Electronic and Optical Properties of Poly-C,Si,Ge-acenes

    Get PDF
    We report a comparative computational investigation on the first six members of linear poly-C,Si,Ge-acenes (X4n+2H2n+4, X = C,Si,Ge; n = 1, 2, 3, 4, 5, 6). We performed density functional theory (DFT) and time-dependent DFT calculations to compare morphological, electronic, and optical properties. While C-acenes are planar, Si-and Ge-acenes assume a buckled configuration. Electronic properties show similar trends as a function of size for all families. In particular, differently from C-based compounds, in the case of both Si-and Ge-acenes, the excitation energies of the strongest low-lying electronic transition (β peaks) span the visible region of the spectrum, demonstrating their size tunability. For all families, we assessed the plasmonic character of this transition and found a linear relationship for the wavelength-dependence of the β peaks as a function of the number of rings. A similar slope of about 56 nm is observed for Si-and Ge-acenes, although the peak positions of the former are located at lower wavelengths. Outcomes of this study are compared with existing theoretical results for 2D lattices and nanoribbons, and experiments where available

    Coherent Manipulation of Orbital Feshbach Molecules of Two-Electron Atoms

    Get PDF
    Ultracold molecules have experienced increasing attention in recent years. Compared to ultracold atoms, they possess several unique properties that make them perfect candidates for the implementation of new quantum-technological applications in several fields, from quantum simulation to quantum sensing and metrology. In particular, ultracold molecules of two-electron atoms (such as strontium or ytterbium) also inherit the peculiar properties of these atomic species, above all the possibility to access metastable electronic states via direct excitation on optical clock transitions with ultimate sensitivity and accuracy. In this paper we report on the production and coherent manipulation of molecular bound states of two fermionic 173^{173}Yb atoms in different electronic (orbital) states 1^1S0_0 and 3^3P0_0 in proximity of a scattering resonance involving atoms in different spin and electronic states, called orbital Feshbach resonance. We demonstrate that orbital molecules can be coherently photoassociated starting from a gas of ground-state atoms in a three-dimensional optical lattices by observing several photoassociation and photodissociation cycles. We also show the possibility to coherently control the molecular internal state by using Raman-assisted transfer to swap the nuclear spin of one of the atoms forming the molecule, thus demonstrating a powerful manipulation and detection tool of these molecular bound states. Finally, by exploiting this peculiar detection technique we provide first information on the lifetime of the molecular states in a many-body setting, paving the way towards future investigations of strongly interacting Fermi gases in a still unexplored regime.Comment: 11 pages, 8 figure

    Huge excitonic effects in layered hexagonal boron nitride

    Full text link
    The calculated quasiparticle band structure of bulk hexagonal boron nitride using the all-electron GW approximation shows that this compound is an indirect-band-gap semiconductor. The solution of the Bethe-Salpeter equation for the electron-hole two-particle Green function has been used to compute its optical spectra and the results are found in excellent agreement with available experimental data. A detailed analysis is made for the excitonic structures within the band gap and found that the excitons belong to the Frenkel class and are tightly confined within the layers. The calculated exciton binding energy is much larger than that obtained by Watanabe {\it et al} using a Wannier model to interpret their experimental results and assuming that h-BN is a direct-band-gap semiconductor.Comment: 4 pages, 3 figure

    Humans running in place on water at simulated reduced gravity

    Get PDF
    On Earth only a few legged species, such as water strider insects, some aquatic birds and lizards, can run on water. For most other species, including humans, this is precluded by body size and proportions, lack of appropriate appendages, and limited muscle power. However, if gravity is reduced to less than Earth's gravity, running on water should require less muscle power. Here we use a hydrodynamic model to predict the gravity levels at which humans should be able to run on water. We test these predictions in the laboratory using a reduced gravity simulator
    • …
    corecore